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Abstract— The paradigm shift from proprietary standards to Global 

standards in service computing has made web a user centric 

environment. With the advent of Web service more and more user are 

on track to team up and share for their benefits. In a user centric 

environment the service user namely the consumer, an application 

developer in our context is oriented towards providing more value 

added services by means of discovery and composition. Here finding 

all similar services that matches user demand is desired.. 

Homogenous or similar services at fine grained level are clustered 

based on their functional similarity. These are stored in a service store 

called service aggregator which serves as a repository for the 

consumer to spot out his interest. Similar service discovery includes 

search of similar single operation or composite operation. In our 

approach we propose a storage model that can incorporated functional 

as well as QoS  i.e. non functional characteristics so that more 

specific user demand can be contented. To reduces the time consumed 

in searching the store we propose map reduce based searching 

framework. It not only reduces the time consumed in search but also 

helps the user to match is demand more precisely.  

 

Keywords – Service Discovery, Similar Service, Service Store, 

Relational model, QoS, MapReduce 

1 Introduction  

Service oriented computing has gained momentum with the 
paradigm shift from proprietary standard to global standard. 
The advent of web services has further boosted the environment 
into more user centric were more and more user collaborate for 
their benefits.  The technology support that Web Service [1]  
provides using XML standards such UDDI, WSDL and SOAP 
has reduced the challenge in interoperability to data and 
communication level. This enabled the increase in number of 
services both in demand and offer. The competitive push of the 
providers and competence pull of consumers has made this 
environment an ever green research area. 

As the number of services has increased the effort needed 
by the consumer to run through each service to find the service 
of his choice is taxing. To overcome this challenging an 
effective discovery mechanism is significant.  The major 
challenge lies in digging out the optimal service precisely. The 
basic sources for discovery are UDDI where the description and 
location of the service is depicted and WSDL [4] where the 
interface, operations input and output parameters are provided. 
In traditional approach [5][12][15][17]the search is based on 
keyword in public UDDI registries, where the keywords in the 
user query are matched with the keywords in the description. 
This approach lack precision as it returns irrelevant services and 

also misses relevant services. Moreover users are willing to be 
more precise in their request rather than keywords. This 
challenge has been addressed by providing semantic 
annotations to describe services using OWL-s [3] or WSDL 
semantic [14]. But again the ontology based approach suffers 
from performance problem due to ontology reasoners and 
WSDL approach suffers from precision problem. Moreover the 
dynamic nature of the services provider and service consumer 
has made service discovery an ever improving model.  

In some context the user namely a valued added service 
developer may went through the process of service discovery 
and ends up in a service which he found inappropriate for some 
reasons, he may prefer to find similar operations that takes 
similar inputs/outputs to the ones just considered together  with 
that best suites his preferences. It is reasonable to support such 
similar services search which assist in discovering similar 
service and user preferences. Such approach should be efficient 
for the consumers to find the desired service.  

In our approach we would like to propose and efficient 
discovery methods that can complement with user centric 
environment where user demand matched to both functional 
and non functional characteristics of similar operations as well 
potentially composible operations. The approaches in the paper 
include  

 Similarity measures based on the metadata available 
from the WSDL description and matching similar 
datatypes into concepts and algorithms to retrieve the 
underlying semantic. as in.[16][18] 

 We propose a tuple based search model where 
searching of similar operations can be based on tuple 
matching using map reduce concepts. The approach 
can support both the retrieval of single similar 
operation and composible operations. 

The remainder of this paper is organized as follows : 
Section 2 Literature survey 3 Proposed system 4 Extracting 
Similar operation section 5 Framework for service search 
Section 6 Experimental Evaluation Section 7 Conclusion and 
future direction.  

2  Literature Survey 

In discovery of similar services two type of services can be 
identified,   single service that matches the user preference may 
be termed as atomic or elementary service or if a single service 
does not satisfies his request then set of service termed as 
composible services that satisfies his preferences. 
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2.1 Similarity measurement and similar concept 

clustering 

The functionality offered by a service depends on its 
Operations. So the challenge lies in finding similar operations. 
The operations are similar if they have similar input and similar 
output.  In case of sequence of operation where the intake of the 
first operation is the expected input and the outcome of the last 
operation is the desired output with intermediate operations 
using the output of its preceding operation. Due to 
heterogeneity nature in naming operation, input and output for 
instance  ―TravelByDestination‖ and ―CabByLocation‖ both 
represent similar type of service with  similar operation 
―BookTicket‖ and ―ReserveTicket‖. If input parameter to the 
first operation is ―Location‖ and to that of the second operation 
is ―Area‖ which are similar in nature .The challenge lies in 

 Finding an appropriate similarity measure ie finding 

association between similar service, similar operation, 

similar input and similar output for example ―book‖ 

and ―reserve‖. 

 Clustering similar terms into concepts for example 

giving common concept name ticket {book, Reserve}. 

The similarity measurement approach proposed in [20] is 
based on scheme matching of the input and output parameters; 
schema matching has less precision because it does not consider 
the underlying semantics. In [16] [18] similarity measurement 
is proposed based on association rules and clustering concepts 
using agglomeration algorithm. In both the approach the 
similarity is measured using the measures of support and 
confidence.  In [18] for further improving clustering they 
employ domain taxonomy. The approach similar to [18] is 
proposed in our work as it has more precision compared to the 
other two approaches[20][16]. Multiple sources of evidence for 
concept clustering which can incorporate domain ontology and 
web contents will also considered. 

2.2 Storage model for simple and composible services 

As there exists two types of similar services namely single 
service or composible service two types of search has to be 
done. An efficient storage model that can incorporate both the 
type of searches is expected.  

In [18] they proposed a directed  graph based search model 
representing each operation as a node and the composition 
opportunity as directed edges, and assign the weight of the edge 
with similarity matching score between input and output but 
this approach lack scoring based on multiple attributes as the 
increase in number edges between the nodes is inversely 
proportional to the efficiency of the search. In [19]  tuple based 
storage model is proposed but it does not include both the types 
of service ie single and composible. In our approach we would 
like to propose a relational model that can incorporate both the 
type of services and also the QoS preferences which is lacking 
in [18].  

2.3 Quality of Service  Modeling 

QoS of web service are described using QoS description 
languages [7] which may be an ontology language like DAML 
QoS [2]  or syntactical language like WSOL [13].  QoS model 
can be classified based on different aspects such as 

performance, security, stability, user satisfaction [9]. Here in 
our approach  we adopt the QoS aspects based on Performance 
and Stability quality along with cost and reputation 

2.3.1 Performance Quality  

Response Time: The time taken to send a request and to 
receive the response. The Response Time is measured at an 
actual Web service call and it can be calculated as difference 
between request completion time and user request time 

 

 

2.3.2 Stability quality 

Successability:  Successability is defined as the extent to 
which Web services yield successful results over request 
messages. It is the ratio of successfully returned messages after 
requested tasks are performed without errors. 

 
 

2.3.3 Others factors 

Execution Cost: it is termed as the amount of fee the 
provider charges for utility of his service it can be represented 
by  cost 

Reputation: The value of the reputation is defined as the 

average ranking given to the service by consumers. It can  

calculated as the ratio of   average of  user rank to total number 
of users 

 
 

The qualities described above give the quality measurement 
metrics from elementary services in case of composite services 
the quality should be based on the aggregation[3] of the above 
metrics which is depicted in table II. 

3 Proposed System 

3.1  Overall framework for service aggregator with 

definition of terms 

In the section we describe the overall framework of our 
proposed system which is given in Fig1 and brief description o 
each component in it. 

Keyword based crawler engine It is the search engine that 
extracts the service URL from the repositories based on some 
keyword matching. 

WSDL extractor: Based on the URL’s the corresponding 
WSDL files are extracted from the service provider’s site. 

I/O similarity matcher: The similarity matcher matches the 
input  the similar based on some IR matching  methods like 
TF/IDF can creates a bag of terms 

( 1 ) 

( 2 ) 

( 3 ) 



International Journal of Computer Science & Emerging Technologies (IJCSET)    181 

Volume 1 Issue 2, August 2010 

 

 

Concept Builder: It is the work of the concept builder to 
find the association between the terms and clusters them into 
concepts. 

Similar operation matcher : Based on the  similarity of the 
input, output and description of the operation similar operations 
are clustered together using some clustering techniques. 

QoS extractor: The QoS extractor finds the quality of 
service aspects as provided by the service providers for the 
service that are clustered  

Functional and non functional based ranking : Based on the 
QoS and similarity measure the service are stored in the service 
store for retrieval 

User satisfaction store: User satisfaction can be graded 
based on some scale and service store can further refined based 
on the satisfaction 

Query matcher: It is the matcher the matches the user query 
to find the similar services that or of interest to the user based 
on the requirement and constrains  

 

3.2  Storage Model of Service aggregator 

In this section we propose relational based storage structure that 
can store both type of  operation ie atomic or composible. Here 
we make a common sense assumption that the number of 
composible operation should to restricted to some maximum 
threshold as the increase in number of operation may increase 
the execution time. 

3.3.1 Basic tuple structure 

We propose three basic tuple structure namely Similarity Index, 
Masterpool , QualityStore to be store in the service aggregator 
storage. The structure of each is detailed below 

3.3.2 Structure of SimilarIndex 

The SimilarIndex tuple is given by the structure <Smcode, Scode, 
Ocode, Ipara, Opara, Rfirst, Rlast >, Where Smcode is the code given to 
similar operation in the MaterPool,  Scode is the code of the 
service containing the operation , Ocode in the operation code, 
Ipara is the input parameter to the operation and Opara is the 
output parameter to the operation. Rfirst and  Rlast are the first 
and last record of Smcode. 

3.3.3 Structure of MasterPool 

The MasterPool tuple is given by the structure <Smcode, Scode, 
Ocode, Sname, Oname, Ipara, Opara, Ocons, Oseq >, sorted by Smcode 
Where Smcode is the code given to similar operation in the mater 
pool,  Scode is the code of the service containing the operation , 
Ocode in the operation code, Ipara is the input parameter to the 
operation, Opara is the output parameter to the operation, Sname is 
the service name, Oname is the operation name,  Ocons is construct 
of the operation atomic or composite and Oseq sequence of 
operation in case of  composible operation. 

3.3.4 Structure of QualityStore 

The QualityStore tuple is given by the structure < Ocode, Qxmax, 

Qxmin >, where Ocode is the operation code,  Qxmax, Max value of 
the quality and Qxmin is the minimum value of the quality. 

Table 1. Structure of Similar Index 

Smcode Scode Ocode Ipara Opara 

SM1 S1 O1 ZipCode Temperature 

 
Table 2. Structure of quality store 

Ocode QEmax,  QEmin 

O1 0.56 0.45 

 

Table3. Structure of Master Pool 
  

 

 

 

 

 

 

Smcode Scode Ocode Sname Oname Ipara Opara Ocons Oseq 

SM1 S1 O1 Weather forecast GetTempByZipcode ZipCode Temperature atomic null 

SM1 S2 O2 - - Areacode Warmth Sequence O3O4 

SM2 S3 O3 Area locator GetAreabyareacode Areacode Areaname atomic null 

SM3 S4 O4 Climatefind Getwarmthbyarea Areaname Warmth atomic null 

  

Service 
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Service 
Registry 

 

Service 
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WSDL Extractor 

Concept Builder 

Service  
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IO similarity matcher 

Similar operation Matcher 

Functional and non functional Ranking mechanism 

QoS Extractor 

Service  
Consumer 

 

Service 
Store 

User satisfaction store 

Query matching 

 
 

Fig 1: Overall framework for Service aggregator Model 
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4 Extracting Similar Operations 

In this section we provide the method for similar operation 
extraction. We adhere to the same approach provided in [18] as 
it has higher precision when compared to the approaches in 
[20] and [16]. We propose that the improvement in clustering 
can be enhances by comparing with multiple source of 
evidence. 

The approach is based on the heuristics  that name of the 
operations, input/output parameters is often combined as a 
sequence of terms eg. ZipCodeToTemperture. Another 
commonsense heuristics is that the words trends it express the 
same semantics concepts if they often occur together[20]. 

4.1 Similarity measurement for  Text Description 

The textual description of service, operation or input/output is 
done using the tradition IR techniques of TF/IDF where is the 
term frequency and is defined as ratio of number of occurrence 
of the term in the document to the total number of terms in the 
document. 

4.2 Similarity measurement of input/output parameters 

The input/output parameters are grouped into terms called 
the term bag. The association between two terms are measured 
in terms of two probability measures  support and confidence. 
Support is the number of input/output containing the terms ti to  
the total number of input/output terms and The association 
rules are computed using the A-Prior algorithm 

4.3 Clustering association to concepts 

Based on the association rule the terms are clustered into 
concept based on the measure (Cij , Sij) using agglomeration 
algorithm which is the bottom up version of hierarchical 
clustering.  

The algorithm works as follows, each term is initialized to a 
cluster. It sorts the association rules in descending order of 
their confidence and then by support. The terms are arranged in 
the form of square matrix M where each Mij is the tuple (Cij , 
Sij). The each step the algorithm selects the highest ranking rule 
above some threshold δ ie Cij > δ, Sij > δ. The two terms are 
combined into a cluster and the values are adjusted. The 
algorithm terminates when no more ranking > δ are available. 
Finally each cluster is grouped under a concept. 

4.4 Fine tuning the clustering of Concepts 

The clustering algorithm above is an unsupervised bottom up 
approach. The clusters may have low cohesion due to the fact 
that only association rules are considered. In [3] it is proposed 
that domain taxonomy can be used for further refining the 
clusters. In their approach matching score was calculated and 
terms are clustered taking this score together with association 
for clustering. The domain taxonomy is build using a 
floksonomy. Here we suggest that domain ontology and more 
web contents can also be added for building up the domain 
taxonomy 

4.5 Discovering similar operations 

Operation are defined by the tuple Oop  =  <Dop,Din,Dou>. The 
similarity of operations Oop1 and Oop2  are measured  by finding 
the similarity of each term in the tuple. 

To measure the text description of the service Sds and the 
operation Dop we using traditional TF/IDF measure as given in 
the previous section. 

Next the similarity of the input and output are measured by 
considering the under lying semantics. First the similarity of 
the description of the input/output names are evaluate using 
TF/IDF then each term in the input/output are replaced by their 
corresponding concept and the concepts are compared using 
TF/IDF measure. 

Finally the similarity Score between the two Oop1 and Oop2  
Score (Oop1 , Oop2  ) is  calculated by multiplying each similarity 
score ie the  similarity score of service description  score(Sds1, 
Sds2), similarity score of operation description score(Dop1, Dop2), 
similarity score of inputs score(Din1, Din2) and similarity score 
of outputs score(Dou1, Dou2) by a weighing factor wi 

respectively for each score and then summing them.  

wi  are considered in such a way that the sum of wi is unity.  
If the Score (Oop1 , Oop2  ) > ω where ω is the given threshold 
then the operation Oop1 & Oop2  are considered similar.aggregate 
store 

5 Famework for Service search using Map 

Reduce  

In.in this section we provide a framework as given in fig 2 
which we propose to use to search similar services for the user 
demand.  in order to improve the efficiency the framework is 
designed using the concepts of  mapreduce[6]. 

5.1 Mapping user query  

Map part 
When the user submits the query  in the form 

Q=<Iuse,Ouse,Pex,Pcost…..> , The similarity index table is 
partitioned into τ parts and each part is assigned to the function  

 Master 

Match  

Extractor  

Quality 
matcher 

Similar operations 

Match  Match  

Quality 
matcher 

Quality 
matcher 

Similarity 

Index 

Master 

Pool 

Quality 

Store 

Map  

Reduce 

Map  

Reduce 

 
 

Fig 2: Framework for similar service search 
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Match(Iuse,Ouse, N1,N2,Msimi, SIcodei) Where N2 – N1 = τ and 
i = 1,…., p .  

The value of τ is number of records in SimilarIndex divided 
by number of partitions p. N1 and N2 are first and last record 
of a particular partition. The output of the function will be the 
maximum similarity score Msimi, and the similarity code SIcodei 
for that score. The algorithm is given in  Fig 3. 

Reduce part 
In reduce part the output (Msimi, SIcodei )for i = 1 to p 

returned by the Match function is given as an input to 
Extractor(Msimi, SIcodei , Ocode ) which returns the set  of 
operation code Ocodei  (where i = 1 to n) that has maximum 
SIcode value. The algorithm is given in  Fig 4. 

5.2 Retrieving similar operations 

Map part 
The operation code return is combined with each user 

preference and the send to the function Matchquality(Ocodei, pJ) 

where i varies from 1 to n  and j=1 to m where m is the number 
of preference. The number of partitions depends on the value 
of j. The algorithm is given in  Fig 5. 

The output of the matchquality function is the set of 
operation the satisfies the user preference for each preference 

Reduce part 
The set returned by each of the match quality function is 

sent as the input of the similaroperation. The similaroperation 
function returns the intersection of all the returned operation by 
match quality function which is the set of similar operations the 
matches the user query. 

6 Experimental Evaluation 

We have implemented our prototype, named as ServicePool, to 

discover the homogeneous services based on the approach 

described above. we employ a server that manages the pool in 

aspects of service clustering, discovery and execution. The 

server records the services. registered in the pool, including 

the service URL, service names, operations and 

inputs/outputs. We present the user interface for service 

discovery and subscription, as shown in Figure 6. Such UI is 

so friendly that: (1) the users can do basic operation easily and 

the discovered results are presented to the user with  whole 

QoS spectrum according to the users’ preference. As 

Operation Name, Input, Output, Description of the operation, 

URL of the service and the quality details Given the users’ 

request, ServicePool can  return the operations with similar inputs 

and outputs,. Note that the returned results by ServicePool are 

evaluated by using the  usual metrics employed in traditional IR 

communities, we evaluate our approach with the recall (r) and 

precision (p).Also we measure the retrivial efficiency of the 

system from other system as we use simple relational model and 

Map reduce concept. 

 

Fig 3: Matching user query with similarity Index. 

 

Algorithm 1 :Match for matching user query and index table 

Input : Iuse,Ouse, N1,N2,Msimi, SIcodei 

Output: Msimi, SIcodei, Rfirst, Rlast 

 

1.  Iinitialize Msimi = 0, SIcodei=null 

2.  FOR j various from N1 to N2 and each Ocodej// from similarity 

index table 

3. COMPUTE score((Iuse,Ouse),( IparaOpara)) 

4.  IF score((Iuse,Ouse),( IparaOpara))> Msimi 

5. THEN Msimi = score((Iuse,Ouse),( IparaOpara)) 

6. ASSIGN SIcodei = Smcodej 

7. END IF 

8. ENDFOR 

9. Return Msimi, SIcodei, Rfirst, Rlast 

 

Fig 4: Extracting operation from master pool 

Algorithm 2 :Extractor the extract the operation that has maximum 

similarity score 

Input : Msimi, SIcodei,   p (number of partitions) 

Output: set of ORcode 

 

1. Initialize Ocodej =null 

2. FOR i various from 1 to p 

3. ASSIGN SIcode = Max(Msimi, SIcodei  ) // SIcodei that  has maximum 

Msimi value 

4. END FOR 

5. IF Smcode =, SIcode  

6. FOR j varies from Rfirst to , Rlast // records for Masterpool 

7. ORcode = ORcode  Ocode 

8. END FOR 

9. ENDIF 

10. RETURN ORcode 

Fig 5: Matching quality from quality table 

 

Algorithm 3 :Match quality for matching the operations with user 

preferences  

Input : ORcode, Pi    

Output: OPcodei 

 

1. Initialize OPcode =null 

2. FOR each element in ORcode 

3. COMPARE the value QEmax, QEmin in quality store with user 

preference Pi of quality i 

4. IF match 

5. THEN Opcodei = Opcode  Ocode 

6. END IF 

7. ENDFOR 

8. Return Opcodei // ordered by Opcode 
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Output of the  System  is 

 
W1 : Web Service: Convertor 
Description :Service that coverts various measurement 
values. 
Operation: Curreny Convertor 
Descritpion: The converts ruppes to dollars 
Input: Rupees 
Output: Dollars 
Execution Time: 0.23 , Cost:$75 
URL “ http://WWW.convertor.com 
 
W2 : Web Service: Convertor 
Description :Service that coverts various measurement 
values. 
Operation: Curreny Convertor 
Descritpion: The converts Euro to dollars 
Input: Euro 
Output: Dollars 
Execution Time: 0.23 , Cost:$75 
URL “ http://WWW.convertordol.com 

7 Conclusion and future Direction 

The advent of non proprietary standard, more precisely the 

proliferation of webservice has made web more usercentric 

more than a platform for business integration. So service 

computing has gained momentum and user started using the 

web more directly for their own benefits. It is evident that 

orientation towards finding similar services is significant. 

Here in our approach we have proposed a  intermediate 

storage area called service aggregator which can assist a user, 

here an application developer to find similar services to the 

service he have in hand. The WSDL metadata does not 

provide the semantic of the services it is essential to provide a 

similarity measurement approach the measure the similarity 

between different operation based on  their description 

input/output parameters. The similarity measure provided 

[X.Liu et al. 2009] provides a better precision and recall we 

adhere to the same approach with little suggestion to improve 

the domain taxonomy. As for as storage model is concerned 

we have proposed a relational model which consists of three 

storage structure similarity index, master pool and quality 

store. To improve the efficiency we proposed MapReduce 

based matching and retrieving techniques. In our approach we 

have considered for single input and single output, the same 

can be extended for multiple input and multiple output in the 

future. In our approach we are considering only the WSDL 

description  with the increase in semantic description of the 

web service using  ontology language like  OWL_S the 

similarity measure can be better enhanced resulting in better 

recall and precision. 
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