
International Journal of Computer Science & Emerging Technologies (IJCSET) 179

Volume 1 Issue 2, August 2010

Efficient Service Retrieval from Service Store using

Map Reduce

K.V. Augustine, S.K.V Jayakumar,

Department of Computer Science

Pondicherry University

Puducherry

augustine.k.v@gmail.com

Abstract— The paradigm shift from proprietary standards to Global

standards in service computing has made web a user centric

environment. With the advent of Web service more and more user are

on track to team up and share for their benefits. In a user centric

environment the service user namely the consumer, an application

developer in our context is oriented towards providing more value

added services by means of discovery and composition. Here finding

all similar services that matches user demand is desired..

Homogenous or similar services at fine grained level are clustered

based on their functional similarity. These are stored in a service store

called service aggregator which serves as a repository for the

consumer to spot out his interest. Similar service discovery includes

search of similar single operation or composite operation. In our

approach we propose a storage model that can incorporated functional

as well as QoS i.e. non functional characteristics so that more

specific user demand can be contented. To reduces the time consumed

in searching the store we propose map reduce based searching

framework. It not only reduces the time consumed in search but also

helps the user to match is demand more precisely.

Keywords – Service Discovery, Similar Service, Service Store,

Relational model, QoS, MapReduce

1 Introduction

Service oriented computing has gained momentum with the
paradigm shift from proprietary standard to global standard.
The advent of web services has further boosted the environment
into more user centric were more and more user collaborate for
their benefits. The technology support that Web Service [1]
provides using XML standards such UDDI, WSDL and SOAP
has reduced the challenge in interoperability to data and
communication level. This enabled the increase in number of
services both in demand and offer. The competitive push of the
providers and competence pull of consumers has made this
environment an ever green research area.

As the number of services has increased the effort needed
by the consumer to run through each service to find the service
of his choice is taxing. To overcome this challenging an
effective discovery mechanism is significant. The major
challenge lies in digging out the optimal service precisely. The
basic sources for discovery are UDDI where the description and
location of the service is depicted and WSDL [4] where the
interface, operations input and output parameters are provided.
In traditional approach [5][12][15][17]the search is based on
keyword in public UDDI registries, where the keywords in the
user query are matched with the keywords in the description.
This approach lack precision as it returns irrelevant services and

also misses relevant services. Moreover users are willing to be
more precise in their request rather than keywords. This
challenge has been addressed by providing semantic
annotations to describe services using OWL-s [3] or WSDL
semantic [14]. But again the ontology based approach suffers
from performance problem due to ontology reasoners and
WSDL approach suffers from precision problem. Moreover the
dynamic nature of the services provider and service consumer
has made service discovery an ever improving model.

In some context the user namely a valued added service
developer may went through the process of service discovery
and ends up in a service which he found inappropriate for some
reasons, he may prefer to find similar operations that takes
similar inputs/outputs to the ones just considered together with
that best suites his preferences. It is reasonable to support such
similar services search which assist in discovering similar
service and user preferences. Such approach should be efficient
for the consumers to find the desired service.

In our approach we would like to propose and efficient
discovery methods that can complement with user centric
environment where user demand matched to both functional
and non functional characteristics of similar operations as well
potentially composible operations. The approaches in the paper
include

 Similarity measures based on the metadata available
from the WSDL description and matching similar
datatypes into concepts and algorithms to retrieve the
underlying semantic. as in.[16][18]

 We propose a tuple based search model where
searching of similar operations can be based on tuple
matching using map reduce concepts. The approach
can support both the retrieval of single similar
operation and composible operations.

The remainder of this paper is organized as follows :
Section 2 Literature survey 3 Proposed system 4 Extracting
Similar operation section 5 Framework for service search
Section 6 Experimental Evaluation Section 7 Conclusion and
future direction.

2 Literature Survey

In discovery of similar services two type of services can be
identified, single service that matches the user preference may
be termed as atomic or elementary service or if a single service
does not satisfies his request then set of service termed as
composible services that satisfies his preferences.

mailto:augustine.k.v@gmail.com

International Journal of Computer Science & Emerging Technologies (IJCSET) 180

Volume 1 Issue 2, August 2010

2.1 Similarity measurement and similar concept

clustering

The functionality offered by a service depends on its
Operations. So the challenge lies in finding similar operations.
The operations are similar if they have similar input and similar
output. In case of sequence of operation where the intake of the
first operation is the expected input and the outcome of the last
operation is the desired output with intermediate operations
using the output of its preceding operation. Due to
heterogeneity nature in naming operation, input and output for
instance ―TravelByDestination‖ and ―CabByLocation‖ both
represent similar type of service with similar operation
―BookTicket‖ and ―ReserveTicket‖. If input parameter to the
first operation is ―Location‖ and to that of the second operation
is ―Area‖ which are similar in nature .The challenge lies in

 Finding an appropriate similarity measure ie finding

association between similar service, similar operation,

similar input and similar output for example ―book‖

and ―reserve‖.

 Clustering similar terms into concepts for example

giving common concept name ticket {book, Reserve}.

The similarity measurement approach proposed in [20] is
based on scheme matching of the input and output parameters;
schema matching has less precision because it does not consider
the underlying semantics. In [16] [18] similarity measurement
is proposed based on association rules and clustering concepts
using agglomeration algorithm. In both the approach the
similarity is measured using the measures of support and
confidence. In [18] for further improving clustering they
employ domain taxonomy. The approach similar to [18] is
proposed in our work as it has more precision compared to the
other two approaches[20][16]. Multiple sources of evidence for
concept clustering which can incorporate domain ontology and
web contents will also considered.

2.2 Storage model for simple and composible services

As there exists two types of similar services namely single
service or composible service two types of search has to be
done. An efficient storage model that can incorporate both the
type of searches is expected.

In [18] they proposed a directed graph based search model
representing each operation as a node and the composition
opportunity as directed edges, and assign the weight of the edge
with similarity matching score between input and output but
this approach lack scoring based on multiple attributes as the
increase in number edges between the nodes is inversely
proportional to the efficiency of the search. In [19] tuple based
storage model is proposed but it does not include both the types
of service ie single and composible. In our approach we would
like to propose a relational model that can incorporate both the
type of services and also the QoS preferences which is lacking
in [18].

2.3 Quality of Service Modeling

QoS of web service are described using QoS description
languages [7] which may be an ontology language like DAML
QoS [2] or syntactical language like WSOL [13]. QoS model
can be classified based on different aspects such as

performance, security, stability, user satisfaction [9]. Here in
our approach we adopt the QoS aspects based on Performance
and Stability quality along with cost and reputation

2.3.1 Performance Quality

Response Time: The time taken to send a request and to
receive the response. The Response Time is measured at an
actual Web service call and it can be calculated as difference
between request completion time and user request time

2.3.2 Stability quality

Successability: Successability is defined as the extent to
which Web services yield successful results over request
messages. It is the ratio of successfully returned messages after
requested tasks are performed without errors.

2.3.3 Others factors

Execution Cost: it is termed as the amount of fee the
provider charges for utility of his service it can be represented
by cost

Reputation: The value of the reputation is defined as the

average ranking given to the service by consumers. It can

calculated as the ratio of average of user rank to total number
of users

The qualities described above give the quality measurement
metrics from elementary services in case of composite services
the quality should be based on the aggregation[3] of the above
metrics which is depicted in table II.

3 Proposed System

3.1 Overall framework for service aggregator with

definition of terms

In the section we describe the overall framework of our
proposed system which is given in Fig1 and brief description o
each component in it.

Keyword based crawler engine It is the search engine that
extracts the service URL from the repositories based on some
keyword matching.

WSDL extractor: Based on the URL’s the corresponding
WSDL files are extracted from the service provider’s site.

I/O similarity matcher: The similarity matcher matches the
input the similar based on some IR matching methods like
TF/IDF can creates a bag of terms

(1)

(2)

(3)

International Journal of Computer Science & Emerging Technologies (IJCSET) 181

Volume 1 Issue 2, August 2010

Concept Builder: It is the work of the concept builder to
find the association between the terms and clusters them into
concepts.

Similar operation matcher : Based on the similarity of the
input, output and description of the operation similar operations
are clustered together using some clustering techniques.

QoS extractor: The QoS extractor finds the quality of
service aspects as provided by the service providers for the
service that are clustered

Functional and non functional based ranking : Based on the
QoS and similarity measure the service are stored in the service
store for retrieval

User satisfaction store: User satisfaction can be graded
based on some scale and service store can further refined based
on the satisfaction

Query matcher: It is the matcher the matches the user query
to find the similar services that or of interest to the user based
on the requirement and constrains

3.2 Storage Model of Service aggregator

In this section we propose relational based storage structure that
can store both type of operation ie atomic or composible. Here
we make a common sense assumption that the number of
composible operation should to restricted to some maximum
threshold as the increase in number of operation may increase
the execution time.

3.3.1 Basic tuple structure

We propose three basic tuple structure namely Similarity Index,
Masterpool , QualityStore to be store in the service aggregator
storage. The structure of each is detailed below

3.3.2 Structure of SimilarIndex

The SimilarIndex tuple is given by the structure <Smcode, Scode,
Ocode, Ipara, Opara, Rfirst, Rlast >, Where Smcode is the code given to
similar operation in the MaterPool, Scode is the code of the
service containing the operation , Ocode in the operation code,
Ipara is the input parameter to the operation and Opara is the
output parameter to the operation. Rfirst and Rlast are the first
and last record of Smcode.

3.3.3 Structure of MasterPool

The MasterPool tuple is given by the structure <Smcode, Scode,
Ocode, Sname, Oname, Ipara, Opara, Ocons, Oseq >, sorted by Smcode
Where Smcode is the code given to similar operation in the mater
pool, Scode is the code of the service containing the operation ,
Ocode in the operation code, Ipara is the input parameter to the
operation, Opara is the output parameter to the operation, Sname is
the service name, Oname is the operation name, Ocons is construct
of the operation atomic or composite and Oseq sequence of
operation in case of composible operation.

3.3.4 Structure of QualityStore

The QualityStore tuple is given by the structure < Ocode, Qxmax,

Qxmin >, where Ocode is the operation code, Qxmax, Max value of
the quality and Qxmin is the minimum value of the quality.

Table 1. Structure of Similar Index

Smcode Scode Ocode Ipara Opara

SM1 S1 O1 ZipCode Temperature

Table 2. Structure of quality store

Ocode QEmax, QEmin

O1 0.56 0.45

Table3. Structure of Master Pool

Smcode Scode Ocode Sname Oname Ipara Opara Ocons Oseq

SM1 S1 O1 Weather forecast GetTempByZipcode ZipCode Temperature atomic null

SM1 S2 O2 - - Areacode Warmth Sequence O3O4

SM2 S3 O3 Area locator GetAreabyareacode Areacode Areaname atomic null

SM3 S4 O4 Climatefind Getwarmthbyarea Areaname Warmth atomic null

Service
Registry

Service
Registry

Service
Registry

Key word based Crawler engine

WSDL Extractor

Concept Builder

Service
Provider

IO similarity matcher

Similar operation Matcher

Functional and non functional Ranking mechanism

QoS Extractor

Service
Consumer

Service
Store

User satisfaction store

Query matching

Fig 1: Overall framework for Service aggregator Model

International Journal of Computer Science & Emerging Technologies (IJCSET) 182

Volume 1 Issue 2, August 2010

4 Extracting Similar Operations

In this section we provide the method for similar operation
extraction. We adhere to the same approach provided in [18] as
it has higher precision when compared to the approaches in
[20] and [16]. We propose that the improvement in clustering
can be enhances by comparing with multiple source of
evidence.

The approach is based on the heuristics that name of the
operations, input/output parameters is often combined as a
sequence of terms eg. ZipCodeToTemperture. Another
commonsense heuristics is that the words trends it express the
same semantics concepts if they often occur together[20].

4.1 Similarity measurement for Text Description

The textual description of service, operation or input/output is
done using the tradition IR techniques of TF/IDF where is the
term frequency and is defined as ratio of number of occurrence
of the term in the document to the total number of terms in the
document.

4.2 Similarity measurement of input/output parameters

The input/output parameters are grouped into terms called
the term bag. The association between two terms are measured
in terms of two probability measures support and confidence.
Support is the number of input/output containing the terms ti to
the total number of input/output terms and The association
rules are computed using the A-Prior algorithm

4.3 Clustering association to concepts

Based on the association rule the terms are clustered into
concept based on the measure (Cij , Sij) using agglomeration
algorithm which is the bottom up version of hierarchical
clustering.

The algorithm works as follows, each term is initialized to a
cluster. It sorts the association rules in descending order of
their confidence and then by support. The terms are arranged in
the form of square matrix M where each Mij is the tuple (Cij ,
Sij). The each step the algorithm selects the highest ranking rule
above some threshold δ ie Cij > δ, Sij > δ. The two terms are
combined into a cluster and the values are adjusted. The
algorithm terminates when no more ranking > δ are available.
Finally each cluster is grouped under a concept.

4.4 Fine tuning the clustering of Concepts

The clustering algorithm above is an unsupervised bottom up
approach. The clusters may have low cohesion due to the fact
that only association rules are considered. In [3] it is proposed
that domain taxonomy can be used for further refining the
clusters. In their approach matching score was calculated and
terms are clustered taking this score together with association
for clustering. The domain taxonomy is build using a
floksonomy. Here we suggest that domain ontology and more
web contents can also be added for building up the domain
taxonomy

4.5 Discovering similar operations

Operation are defined by the tuple Oop = <Dop,Din,Dou>. The
similarity of operations Oop1 and Oop2 are measured by finding
the similarity of each term in the tuple.

To measure the text description of the service Sds and the
operation Dop we using traditional TF/IDF measure as given in
the previous section.

Next the similarity of the input and output are measured by
considering the under lying semantics. First the similarity of
the description of the input/output names are evaluate using
TF/IDF then each term in the input/output are replaced by their
corresponding concept and the concepts are compared using
TF/IDF measure.

Finally the similarity Score between the two Oop1 and Oop2
Score (Oop1 , Oop2) is calculated by multiplying each similarity
score ie the similarity score of service description score(Sds1,
Sds2), similarity score of operation description score(Dop1, Dop2),
similarity score of inputs score(Din1, Din2) and similarity score
of outputs score(Dou1, Dou2) by a weighing factor wi

respectively for each score and then summing them.

wi are considered in such a way that the sum of wi is unity.
If the Score (Oop1 , Oop2) > ω where ω is the given threshold
then the operation Oop1 & Oop2 are considered similar.aggregate
store

5 Famework for Service search using Map

Reduce

In.in this section we provide a framework as given in fig 2
which we propose to use to search similar services for the user
demand. in order to improve the efficiency the framework is
designed using the concepts of mapreduce[6].

5.1 Mapping user query

Map part
When the user submits the query in the form

Q=<Iuse,Ouse,Pex,Pcost…..> , The similarity index table is
partitioned into τ parts and each part is assigned to the function

 Master

Match

Extractor

Quality
matcher

Similar operations

Match Match

Quality
matcher

Quality
matcher

Similarity

Index

Master

Pool

Quality

Store

Map

Reduce

Map

Reduce

Fig 2: Framework for similar service search

International Journal of Computer Science & Emerging Technologies (IJCSET) 183

Volume 1 Issue 2, August 2010

Match(Iuse,Ouse, N1,N2,Msimi, SIcodei) Where N2 – N1 = τ and
i = 1,…., p .

The value of τ is number of records in SimilarIndex divided
by number of partitions p. N1 and N2 are first and last record
of a particular partition. The output of the function will be the
maximum similarity score Msimi, and the similarity code SIcodei
for that score. The algorithm is given in Fig 3.

Reduce part
In reduce part the output (Msimi, SIcodei)for i = 1 to p

returned by the Match function is given as an input to
Extractor(Msimi, SIcodei , Ocode) which returns the set of
operation code Ocodei (where i = 1 to n) that has maximum
SIcode value. The algorithm is given in Fig 4.

5.2 Retrieving similar operations

Map part
The operation code return is combined with each user

preference and the send to the function Matchquality(Ocodei, pJ)

where i varies from 1 to n and j=1 to m where m is the number
of preference. The number of partitions depends on the value
of j. The algorithm is given in Fig 5.

The output of the matchquality function is the set of
operation the satisfies the user preference for each preference

Reduce part
The set returned by each of the match quality function is

sent as the input of the similaroperation. The similaroperation
function returns the intersection of all the returned operation by
match quality function which is the set of similar operations the
matches the user query.

6 Experimental Evaluation

We have implemented our prototype, named as ServicePool, to

discover the homogeneous services based on the approach

described above. we employ a server that manages the pool in

aspects of service clustering, discovery and execution. The

server records the services. registered in the pool, including

the service URL, service names, operations and

inputs/outputs. We present the user interface for service

discovery and subscription, as shown in Figure 6. Such UI is

so friendly that: (1) the users can do basic operation easily and

the discovered results are presented to the user with whole

QoS spectrum according to the users’ preference. As

Operation Name, Input, Output, Description of the operation,

URL of the service and the quality details Given the users’

request, ServicePool can return the operations with similar inputs

and outputs,. Note that the returned results by ServicePool are

evaluated by using the usual metrics employed in traditional IR

communities, we evaluate our approach with the recall (r) and

precision (p).Also we measure the retrivial efficiency of the

system from other system as we use simple relational model and

Map reduce concept.

Fig 3: Matching user query with similarity Index.

Algorithm 1 :Match for matching user query and index table

Input : Iuse,Ouse, N1,N2,Msimi, SIcodei

Output: Msimi, SIcodei, Rfirst, Rlast

1. Iinitialize Msimi = 0, SIcodei=null

2. FOR j various from N1 to N2 and each Ocodej// from similarity

index table

3. COMPUTE score((Iuse,Ouse),(IparaOpara))

4. IF score((Iuse,Ouse),(IparaOpara))> Msimi

5. THEN Msimi = score((Iuse,Ouse),(IparaOpara))

6. ASSIGN SIcodei = Smcodej

7. END IF

8. ENDFOR

9. Return Msimi, SIcodei, Rfirst, Rlast

Fig 4: Extracting operation from master pool

Algorithm 2 :Extractor the extract the operation that has maximum

similarity score

Input : Msimi, SIcodei, p (number of partitions)

Output: set of ORcode

1. Initialize Ocodej =null

2. FOR i various from 1 to p

3. ASSIGN SIcode = Max(Msimi, SIcodei) // SIcodei that has maximum

Msimi value

4. END FOR

5. IF Smcode =, SIcode

6. FOR j varies from Rfirst to , Rlast // records for Masterpool

7. ORcode = ORcode  Ocode

8. END FOR

9. ENDIF

10. RETURN ORcode

Fig 5: Matching quality from quality table

Algorithm 3 :Match quality for matching the operations with user

preferences

Input : ORcode, Pi

Output: OPcodei

1. Initialize OPcode =null

2. FOR each element in ORcode

3. COMPARE the value QEmax, QEmin in quality store with user

preference Pi of quality i

4. IF match

5. THEN Opcodei = Opcode  Ocode

6. END IF

7. ENDFOR

8. Return Opcodei // ordered by Opcode

International Journal of Computer Science & Emerging Technologies (IJCSET) 184

Volume 1 Issue 2, August 2010

Output of the System is

W1 : Web Service: Convertor
Description :Service that coverts various measurement
values.
Operation: Curreny Convertor
Descritpion: The converts ruppes to dollars
Input: Rupees
Output: Dollars
Execution Time: 0.23 , Cost:$75
URL “ http://WWW.convertor.com

W2 : Web Service: Convertor
Description :Service that coverts various measurement
values.
Operation: Curreny Convertor
Descritpion: The converts Euro to dollars
Input: Euro
Output: Dollars
Execution Time: 0.23 , Cost:$75
URL “ http://WWW.convertordol.com

7 Conclusion and future Direction

The advent of non proprietary standard, more precisely the

proliferation of webservice has made web more usercentric

more than a platform for business integration. So service

computing has gained momentum and user started using the

web more directly for their own benefits. It is evident that

orientation towards finding similar services is significant.

Here in our approach we have proposed a intermediate

storage area called service aggregator which can assist a user,

here an application developer to find similar services to the

service he have in hand. The WSDL metadata does not

provide the semantic of the services it is essential to provide a

similarity measurement approach the measure the similarity

between different operation based on their description

input/output parameters. The similarity measure provided

[X.Liu et al. 2009] provides a better precision and recall we

adhere to the same approach with little suggestion to improve

the domain taxonomy. As for as storage model is concerned

we have proposed a relational model which consists of three

storage structure similarity index, master pool and quality

store. To improve the efficiency we proposed MapReduce

based matching and retrieving techniques. In our approach we

have considered for single input and single output, the same

can be extended for multiple input and multiple output in the

future. In our approach we are considering only the WSDL

description with the increase in semantic description of the

web service using ontology language like OWL_S the

similarity measure can be better enhanced resulting in better

recall and precision.

REFERENCES

[1]. BV Kumar, S.V. Subrahmanya ―Web Service An
introduction‖ Tata Mc-Graw-Hill Publishing Company
Limited, New Delhi

Fig 6: User interface for Service Search from Service Pool

International Journal of Computer Science & Emerging Technologies (IJCSET) 185

Volume 1 Issue 2, August 2010

[2]. C. Zhou, L.-T. Chia, and B.-S. Lee, ―DAML-QoS
Ontology for WebServices,‖ Proc. Int’l Conf. Web
Services (ICWS ’04), pp. 472-479,2004.

[3]. D. Martin, "OWL-S: Semantic Markup for Web
Services," in Releases of DAML-S / OWL-S, 2004.

[4]. E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, "Web Services Description
Language.(WSDL) 1.1," 2001.

[5]. Esynaps, http: / /www.esynaps.com, 2009

[6]. J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. InOSDI’04, 6th
Symposium on Operating Systems Design and
Implementation, Sponsored byUSENIX, in cooperation
with ACM SIGOPS, pages 137–150, 2004.

[7]. K.Kritikos abd D.Plexousakis ―Mixed interger
programming for QoS based web service matchmaking‖
IEEE transaction on service computing, Vol.2 No.2 April-
June.

[8]. Liangzhab Zeng, Boualem Benatallah, ―QoS Aware
Middleware for Web Servuce composition‖ IEEE
transition of softwre Engineering VOL.30 No5 May 2004

[9]. Quality Model for Web Services v2.0 Committee Draft,
September 2005

[10]. S. Robertson, ―Understanding Inverse Document
Frequency: OnTheoretical Arguments for IDF,‖ J.
Documentation, vol. 60, no. 5,pp. 503-520, 2004.

[11]. Selected Resources on Quality of Service (QoS)
Specification and Contract-Based Management for XML
Web Services 2006

[12]. Strikeiron http: / /www.Stikeiron.com, 2008.

[13]. V. Tosic, B. Pagurek, and K. Patel, ―WSOL—A
Language for the Formal Specification of Classes of
Service for Web Services,‖ Proc. Int’l Conf. Web
Services (ICWS ’03), pp. 375-381, 2003.

[14]. ―Web Service Semantics,
"http://www.w3.org/Submission/ WSDL-S/.

[15]. WebServiceX, http: / /www.webservicex.net, 2009.

[16]. Xing Dong, Alon Halvy,― Similarity search for web
service‖ Porceeding of the 3oth VLDB conference,
Totronto Canda 2004

[17]. Xmethods http: / /www.Xmethods.com, 2009.

[18]. Xuanzhe Liu, Gang Huang, ―Discovering
homogenous web service community in the user centric
web environment‖, IEEE transition of service computing
VOL.2 No2April June 2009

[19]. Xuanzhe Liu, Li Zhou, Gang Huang, Hong Mei
―Consumer-Centric Web Services Discovery and
Subscription‖ IEEE International Conference on e-
Business Engineering

[20]. Yanan Hao, Yanchim Zhang,―Web service discovery
based on schema matching‖ ACSC conferences Australia
2007

